ANTS

STANDARD METHODS FOR MEASURING AND MONITORING BIODIVERSITY

EDITED BY DONAT AGOSTI, JONATHAN D. MAJER, LEEANNE E. ALONSO, AND TED R. SCHULTZ

FOREWORD BY EDWARD O. WILSON
ANTS

STANDARD METHODS
FOR MEASURING
AND MONITORING
BIODIVERSITY
Biological Diversity Handbook Series

Series Editor: Don E. Wilson

This series of manuals details standard field methods for qualitative and quantitative sampling of biological diversity. Volumes focus on different groups of organisms, both plants and animals. The goal of the series is to identify or, where necessary, develop these methods and promote their adoption worldwide, so that biodiversity information will be comparable across study sites, geographic areas, and organisms, and at the same site, through time.
ANTS

STANDARD METHODS FOR MEASURING AND MONITORING BIODIVERSITY

EDITED BY DONAT AGOSTI, JONATHAN D. MAJER, LEEANNE E. ALONSO, AND TED R. SCHULTZ

SMITHSONIAN INSTITUTION PRESS
WASHINGTON AND LONDON
This book is dedicated to the memory of William L. Brown Jr.,
with affection, respect, and gratitude. For the inspiration you provided,
for the firm foundation you built for ant systematics, and especially
for your generous soul and irreverent good humor, we will never forget you, Bill.
Contents

List of Figures ix
List of Tables xiii
Foreword xv
Edward O. Wilson
Preface xvii

Chapter 1
Biodiversity Studies, Monitoring, and Ants: An Overview 1
Leeanne E. Alonso and Donat Agosti

Chapter 2
A Primer on Ant Ecology 9
Michael Kaspari

Chapter 3
A Global Ecology of Rainforest Ants: Functional Groups in Relation to Environmental Stress and Disturbance 25
Alan N. Andersen

Chapter 4
The Interactions of Ants with Other Organisms 35
Ted R. Schultz and Terrence P. McGlynn

Chapter 5
Diversity of Ants 45
William L. Brown Jr.
Figures

Figure 1.1. Composition of total animal biomass and species composition of insect fauna near Manaus, Brazil 4

Figure 3.1. Classification of communities in relation to stress and disturbance 27

Figure 3.2. Functional group model of ant community organization in relation to environmental stress and disturbance 29

Figure 3.3. Behavior of ants at tuna baits at desert, woodland, and forest sites in southeastern Arizona, illustrating high, moderate, and low levels of behavioral dominance, respectively 30

Figure 3.4. Effects of vegetation on functional group composition in the monsoonal tropics of northern Australia and in cool-temperate southern Australia 32

Figure 3.5. Effects of disturbance on functional group composition of rainforest ants in the humid tropics of Queensland 33

Figure 5.1. Body parts of an ant 70

Figure 7.1. Abundance of 11 species of ant guard on Calathea ovandensis in a Neotropical rainforest 91

Figure 7.2. Abundance of two harvester ants, Pogonomyrmex occidentalis and P. salinus, over 15 and 9 years, respectively, in North America 92

Figure 7.3. Changes in two Chihuahuan desert ant assemblages 93
Figure 7.4. Model illustrating the response of an ecosystem to perturbation 93

Figure 7.5. Relationship between the number of ant species in 3-year-old rehabilitated mines and annual rainfall for a range of sites throughout Australia 94

Figure 7.6. Pattern of recolonization of ants in rehabilitated sand-mined areas on North Stradbroke Island, Queensland 95

Figure 8.1. Locations of 110 leaf litter collection sites 106

Figure 8.2. Species richness of ant leaf litter samples as a function of latitude 110

Figure 8.3. Species richness of ant leaf litter samples as a function of altitude 110

Figure 8.4. Proportion of ant species in a sample belonging to the subfamily Ponerinae as a function of latitude 120

Figure 9.1. An aspirator 125

Figure 9.2. A tuna bait monopolized by *Solenopsis xyloni* in a desert grassland in New Mexico 127

Figure 9.3. A pitfall trap placed in desert soil, a polypropylene sample container used as a pitfall trap, and a pitfall-trap scoop 129

Figure 9.4. Construction of the litter sifter, external dimensions of the “mini-Winkler” sack, and construction of the “mini-Winkler” sack 134

Figure 9.5. Leaf litter extraction using the Winkler extractor 135

Figure 9.6. The pattern used to create a Berlese funnel and the appearance of the assembled funnel 137

Figure 10.1. Assessment of each of 17 leaf litter ant sampling methods in Brazil 150

Figure 10.2. Assessment of Winkler sampling methods in Brazil 152

Figure 11.1. An ant mounted on a point and pinned with labels 159

Figure 11.2. Sample labels for mounted and alcohol specimens 161

Figure 11.3. Mounted ants arranged in unit trays in a collection drawer 169

Figure 13.1. Raw versus smoothed species-accumulation curves from 16 Berlese samples of litter-soil cores 190

Figure 13.2. Cost in samples of adding an additional species to an inventory 191

Figure 13.3. Within-habitat versus combined species-accumulation curves for the Berlese data 191

Figure 13.4. Comparing methods that differ in cost 192

Figure 13.5. Rank abundance plot from Berlese data 193

Figure 13.6. Hypothetical communities with contrasting species-accumulation curves 195

Figure 13.7. Lognormal distribution of species abundance 196

Figure 13.8. Contrasting relative abundance distributions for the Berlese data 197

Figure 13.9. Michaelis-Menten estimates of species richness based on the Berlese data 199

Figure 13.10. Chao2 estimates of species richness based on the Berlese data 200

Figure 15.1. Assessment of leaf litter ant sampling technique for the most species-rich
Figure 15.2. Frequency of capture for species in nine 9-m², 16-m², and 25-m² plots in Malaysia 210

Figure 15.3. Species-accumulation curves for the three plot sizes of 9 m², 16 m², and 25 m² in Malaysia 210

Figure 15.4. Dendrograms comparing different sampling methods by ant species trapped in India 211

Figure 15.5. Mean number of ant species sampled by pitfall traps, Winkler sacks, and both methods combined along ten transects extending from the field into the rainforest in Bahia, Brazil 212
A number of studies have qualitatively assessed the efficacy of diverse methods for sampling rainforest ground-dwelling ants, including pitfall traps (e.g., Adis 1979), Winkler extraction (e.g., Olson 1991), baits (e.g., Fowler 1995), hand collection from quadrats (Room 1975), and "trap-nesting" using artificial nesting sites (Young 1986). However, very few studies have addressed the question of how many samples need to be taken in order to obtain a reasonably complete census of an ant community (e.g., Fisher 1999a). This deficiency of the literature results in part from the fact that the goal of most past ant sampling studies has been to provide a general inventory of the ant fauna of a region (e.g., Wilson 1959; Cover et al. 1990; Veeragh 1990) rather than a rigorous measure of the underlying biodiversity in terms of species numbers and relative abundances.

The qualitative approach may well be adequate when the aim is merely to provide a list of the species present. However, if ants are to be used as bioindicators of some aspect of the environment, or if a rigorous census of species is desired, then richness and abundance measures must be described explicitly per unit area or per unit of sampling effort. In such cases, it is necessary to know whether the samples are or are not capturing a reasonably high proportion of the ant species present; if they are not, then it is necessary to estimate what proportion of the total ant fauna is being sampled.

A single sampling method is unlikely to capture all the ants present in the litter or in other
parts of the ground stratum. To overcome this problem, researchers often use a combination of complementary sampling procedures. Combinations that have been used to sample rainforest ground-dwelling ants include Winkler extraction of both litter and soil (Belshaw and Bolton 1994a); Winkler extraction plus pitfall traps (Olson 1991); Winkler extraction plus pitfall traps plus hand collecting (Andersen and Majer 1991; Fisher 1996a, 1998, 1999b); pitfall traps plus hand collecting (Jackson 1984); pitfall traps plus baits (Fowler 1995); and Berlese funnels plus baits (Levings 1983). In this chapter we use data from comprehensive studies of the ant communities in Brazilian cocoa plantations to address (1) the optimal combination of sampling methods for maximizing the species count of rainforest ground-dwelling ants; and (2) the relationship between the size of individual litter samples and the number of species obtained by Berlese funnel or Winkler extraction methods.

Methods

Field work was carried out on the grounds of the Centre for Cocoa Research (CEPLAC), Ilheus, Bahia (14°45'S, 39°13'W), Brazil. The CEPLAC site formerly consisted of primary Atlantic rainforest (Mata Atlantica), although most of it is now planted with cocoa. Cocoa plantations provide a habitat that retains many features of the original rainforest, and the ground-dwelling ant fauna retains a high degree of similarity to the fauna of the original habitat (Belshaw and Bolton 1993; Young 1986; Delabie et al. 2000).

Sampling Methods Experiment

A 1-ha plantation of regularly planted 20-year-old cocoa trees, shaded with *Erythrina fusca*, was divided into three rows of six cells, each measuring 23.5 m × 23.5 m. For each sampling method, three sample points were randomly selected in each cell, resulting in a total of 54 samples for each method for the entire plot. Sampling was originally designed to census the ant fauna from the soil, the litter, the ground surface, the tree trunks, and the canopy; the preliminary results have been reported in Delabie et al. (1994). Here we consider only those sampling procedures that are relevant to the soil and litter stratum. The 17 sampling methods used were as follows:

1. Small soil samples. Cubes of soil measuring 15 cm on a side were dug up, broken open, sieved, and then inspected on a white surface so that ants could be manually removed.
2. Large soil samples. As in (1), except that the sides of the cubes were 30 cm across.
3. Berlese funnel samples. Samples of litter measuring 1 m² were collected and placed in a funnel for 24 hours.
4. Winkler extraction samples. As in (3), except that the litter was sieved and then placed in Winkler sacks for 24 hours.
5. Pitfall traps (24-hour). A 75-mm-internal-diameter pitfall trap, containing water and a drop of detergent, was placed out for 24 hours.
6. Pitfall traps (7-day). As in (5), except that the traps contained a mixture of ethanol and glycerol and were placed out for 7 days.
7. Sardine bait (4-hour). Small pieces of sardine were placed on a square of tissue paper, and the ants that were attracted were collected after 4 hours.
8. Sardine bait (24-hour). As in (7), except that the baits were inspected after 24 hours.
9. Meat bait (24-hour). Small pieces of meat were placed on a square of tissue paper, and the ants that were attracted were collected after 24 hours.
10. Cassava flour bait (4-hour). A small pile of coarse cassava flour was placed on a
square of tissue paper, and the ants that were attracted were collected after 4 hours.

11. Cassava flour bait (24-hour). As in (10), except that the baits were inspected after 24 hours.

12. Sugar bait (4-hour). A small amount of dilute sugar solution was placed on a square of tissue paper, and the ants that were attracted were collected after 4 hours.

13. Sugar bait (24-hour). As in (12), except that the baits were inspected after 24 hours.

14. Orange peel bait (4-hour). A small piece of orange peel was placed on a square of tissue paper, and the ants that were attracted were collected after 4 hours.

15. Orange peel bait (24-hour). As in (14), except that the baits were inspected after 24 hours.

16. Dead wood inspection. A rotting branch near the sampling point was cut open and the ants within were collected.

17. Dried cocoa pod inspection. A rotting cocoa pod near the sampling point was cut open and the ants within were collected.

A number of additional sampling methods were used to collect ants from other strata in the plantation. These included chemical knockdown and beating of trees, meat and sardine baiting in trees, inspection of dried cocoa pods on trees, inspection of fallen epiphytic bromeliads, and direct observation over fixed time intervals. The ant collections resulting from these methods are outside the scope of this chapter and will be reported in a subsequent publication.

Extended Sampling Experiment

To investigate the effect of number of samples on the number of species obtained, an extended set of soil and litter samples were collected in a nearby plantation of 60-year-old cocoa. This area differs from the 20-year-old plantation described previously in two important ways:

1) the cocoa is grown in a less “manicured” way, is shaded by around 15 species of native overstory rainforest trees, and thus constitutes a more structurally diverse habitat than the 20-year-old plantation; and 2) no pesticides have been applied to it for 30 years. In this plantation, 500 Winkler extractions were collected from 1-m² samples of litter taken from randomized points in a 0.87-ha area.

Sample Size Experiment, 60-Year-Old Brazilian Cocoa Plantation

To investigate the influence of litter sample size on the number of species obtained, a set of samples was taken from the same 60-year-old plantation described previously, but using different litter sample sizes. Samples of 0.01 m², 0.04 m², 0.25 m², and 1 m², each replicated 20 times, were collected and extracted by Berlese funnels over 24 hours. An identical sampling regimen using Winkler extraction methods was also undertaken, except that additional samples of 2 m² were also taken.

Data Analysis

All ants from each experiment were initially sorted to the level of morphospecies, then identified to genus and, where possible, to species. For each sampling method, we constructed a matrix of individual ant species by individual samples and determined the frequency of each species in the samples. Standard diversity analyses were then carried out on the resulting data sets. See Chapter 13 and Magurran (1988) for additional background on the statistical analyses described in this section.

The incidence-based coverage estimator (ICE) (Lee and Chao 1994; Chazdon et al. 1998) and the first-order jackknife estimator (Heltsh and Forrester 1983) are nonparametric approaches for estimating species richness in the local community from which the samples were taken, that is, for estimating how many
species (including those not collected) are present in the sampled community. Calculation of the ICE is based on the number of species found in ten or fewer sampling units, whereas calculation of the jackknife is based on the observed frequency of unique species. To estimate what proportion of the total species richness was collected by each of the methods employed in the current study, plots of cumulative species-per-sample curves were generated in which species accumulation was plotted as a function of the number of samples taken. Three values were plotted for each succeeding sample: the observed number of species, the ICE of the total number of species present, and the first-order jackknife estimate of the total number of species present. For species-accumulation curves, sample order was randomized 100 times and the means of the ICE and jackknife estimates were computed for each succeeding sample station using the program EstimateS (Colwell 1997; see also Colwell and Coddington 1994; Chazdon et al. 1998).

The asymptote of a species-accumulation curve (i.e., the value that the curve approaches as a limit) is interpreted as the total number of species present at the sample site, including those that were not collected. In the current study, the asymptote of the observed species-accumulation curve was calculated with EstimateS (Colwell 1997) using the two-parameter Michaelis-Menten (M-M) equation (Colwell and Coddington 1994) and the maximum likelihood method of Raaijmakers (1987), which is based on the Eadie-Hofstee transformation of the M-M equation. The observed number of ant species and the proportion of the M-M asymptote represented by this number were evaluated for different sample sizes for each of the sampling methods.

The numbers of species collected by different combinations of the various sampling methods have important implications for future sampling studies. To elucidate the optimal combination of sampling methods tested in the sampling methods experiment, first a table was prepared listing the total number of species sampled by each method. The method that sampled the most species was identified, and combinations including one and two additional sampling procedures were assessed in order to elucidate the optimal combinations of two and three sampling methods for maximizing the species count.

To evaluate the influence of the size of the litter sample from which ants were collected by Berlese funnel or Winkler extraction, the mean number of individual ants and the number of species per extraction were calculated; the total number of species from 20 samples of a particular area was also calculated.

Results and Discussion

Interpretation of species richness estimates should take into account a number of factors. A species-accumulation curve is specific to the area of the survey, the season or year, and the collecting techniques employed. The use of additional collecting methods, or a survey in a different area or season at the same site, would most certainly collect additional species. The actual number of species in an area at a given time is of course finite, but, in most cases, exhaustive sampling is not physically or logistically possible. If an observed or estimated species-accumulation curve indicates a decrease in the rate of species accumulation across the number of samples collected, then, for the particular methods employed, that number of samples is arguably adequate for estimating the species richness in the area or transect surveyed. Conversely, if the curve continues to rise rapidly for the number of samples collected, then more intensive sampling may be necessary to obtain an adequate measure of the diversity at that site.

The number of samples sufficient for achieving a high level of species completeness is thus
practically defined as the point at which the accumulation curve shows an adequate decrease in species accrual. The principal problems with this "sufficient-sampling" definition are the lack of a single asymptote for diverse taxa and the difficulty in quantifying "an adequate decrease in species accrual." One practical solution to the latter problem is to sample until a certain percentage—say 80%—of the estimated species are obtained, based on ICE and jackknife estimates of the total number of species that occur in the plot or transect. An alternative approach is to continue to sample until additional sampling effort is predicted to achieve a negligible increase in the number of species sampled. In this approach, the increase in species obtained with additional sampling must be weighed against both the cost of sorting and identifying additional specimens and the relative importance of identifying the full complement of the species at the site. Under either approach, species-accumulation curves can be calculated by randomizing sample accumulation order and using asymptotic or nonasymptotic functions (Colwell and Coddington 1994), and the predicted species richness values can be extrapolated using the ICE, jackknife, and M-M estimation techniques.

Sampling Methods Experiment

The 17 sampling methods yielded a total of 134 ant species. In the total of 918 samples (17 methods × 54 samples per method), most of these ground-dwelling ant species are extremely rare, with 43 species collected only once, 18 species collected twice, and 34 species collected in up to 10 samples; only 39 species occurred in 11 or more samples.

The number of species sampled by the 17 different methods is shown in Table 10.1. Winkler extraction samples yielded the greatest number of species (63), followed by Berlese funnels (48), inspection of dead wood (45), small soil samples (42), and pitfall traps. Pitfall traps run for 7 days yielded more ant species than those run for 24 hours (40 versus 27 species). Large soil samples yielded only 26 species and dead cocoa pods only 17 species, while the species counts from the baiting methods never exceeded 20. Baiting for longer periods of time did not necessarily yield more species; indeed, with the cassava and the sugar baits, a lower number of species was obtained after the longest baiting period.

<table>
<thead>
<tr>
<th>Sampling Method</th>
<th>Number of Species</th>
<th>Rank*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winkler extraction samples</td>
<td>63</td>
<td>1</td>
</tr>
<tr>
<td>Berlese funnel samples</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Dead wood inspection</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>Small soil samples</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>Pitfall traps (7-day)</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Pitfall traps (24-hour)</td>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>Large soil samples</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Sardine bait (24-hour)</td>
<td>20</td>
<td>8.5</td>
</tr>
<tr>
<td>Orange peel bait (24-hour)</td>
<td>20</td>
<td>8.5</td>
</tr>
<tr>
<td>Sardine bait (4-hour)</td>
<td>19</td>
<td>10.5</td>
</tr>
<tr>
<td>Orange peel bait (4-hour)</td>
<td>19</td>
<td>10.5</td>
</tr>
<tr>
<td>Sugar bait (4-hour)</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Dried cocoa pod inspection</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Cassava flour bait (4-hour)</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Meat bait (24-hour)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Cassava flour bait (24-hour)</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Sugar bait (24-hour)</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

*Methods are ranked from 1 (most species sampled) through 17 (fewest species sampled).
Figure 10.1. Assessment of each of 17 leaf litter ant sampling methods in Brazil. The lower (thick) species-accumulation curve plots the observed number of species as a function of the number of stations sampled. The upper curves display the nonparametric first-order jackknife estimator (dashed) and ICE (solid). The estimated total species richness is based on successively larger numbers of samples from the data set (Helshe and Forrester 1983; Lee and Chao 1994). Curves are plotted from the means of 100 randomizations of sample accumulation order.
Table 10.2 Observed Number of Ant Species Evaluated at Different Sample Sizes for Each of the 17 Sampling Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>10 Samples</th>
<th>20 Samples</th>
<th>30 Samples</th>
<th>40 Samples</th>
<th>All (54) Samples</th>
<th>Estimated Species Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICE</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small soil samples</td>
<td>14.0 (20.9)</td>
<td>22.4 (33.5)</td>
<td>25.3 (37.9)</td>
<td>29.6 (44.3)</td>
<td>42 (62.8)</td>
<td>88.5</td>
</tr>
<tr>
<td>Large soil samples</td>
<td>11.9 (39.1)</td>
<td>16.4 (53.9)</td>
<td>20.0 (65.8)</td>
<td>22.7 (74.5)</td>
<td>26 (85.5)</td>
<td>49.0</td>
</tr>
<tr>
<td>Berlese funnel samples</td>
<td>21.8 (39.4)</td>
<td>31.2 (56.4)</td>
<td>37.8 (68.4)</td>
<td>42.4 (76.7)</td>
<td>48 (86.8)</td>
<td>65.7</td>
</tr>
<tr>
<td>Winkler extraction samples</td>
<td>29.3 (42.2)</td>
<td>41.1 (59.1)</td>
<td>49.1 (70.6)</td>
<td>55.0 (79.1)</td>
<td>63 (90.6)</td>
<td>108.1</td>
</tr>
<tr>
<td>Pitfall traps (24-hour)</td>
<td>12.2 (35.9)</td>
<td>17.4 (51.1)</td>
<td>20.8 (61.1)</td>
<td>23.9 (70.2)</td>
<td>27 (79.4)</td>
<td>40.0</td>
</tr>
<tr>
<td>Pitfall traps (7-day)</td>
<td>17.3 (36.5)</td>
<td>24.5 (51.7)</td>
<td>30.0 (63.2)</td>
<td>34.4 (72.4)</td>
<td>40 (84.3)</td>
<td>72.8</td>
</tr>
<tr>
<td>Sardine bait (4-hour)</td>
<td>7.3 (34.6)</td>
<td>10.5 (49.4)</td>
<td>13.2 (62.2)</td>
<td>15.8 (74.6)</td>
<td>19 (89.8)</td>
<td>68.5</td>
</tr>
<tr>
<td>Sardine bait (24-hour)</td>
<td>9.1 (37.3)</td>
<td>13.0 (53.4)</td>
<td>15.8 (64.7)</td>
<td>17.8 (73.2)</td>
<td>20 (82.1)</td>
<td>29.8</td>
</tr>
<tr>
<td>Cassava flour bait (24-hour)</td>
<td>6.1 (36.4)</td>
<td>8.9 (52.8)</td>
<td>10.8 (64.1)</td>
<td>12.2 (72.7)</td>
<td>14 (83.2)</td>
<td>23.8</td>
</tr>
<tr>
<td>Cassava flour bait (4-hour)</td>
<td>6.2 (27.5)</td>
<td>9.3 (41.8)</td>
<td>11.8 (52.8)</td>
<td>13.9 (62.2)</td>
<td>16 (71.6)</td>
<td>24.6</td>
</tr>
<tr>
<td>Meat bait (24-hour)</td>
<td>6.5 (35.0)</td>
<td>9.7 (52.4)</td>
<td>11.8 (64.2)</td>
<td>13.4 (72.6)</td>
<td>15 (81.3)</td>
<td>18.3</td>
</tr>
<tr>
<td>Sugar bait (4-hour)</td>
<td>8.7 (41.0)</td>
<td>12.0 (56.7)</td>
<td>14.3 (68.0)</td>
<td>16.0 (75.9)</td>
<td>18 (85.4)</td>
<td>27.0</td>
</tr>
<tr>
<td>Sugar bait (24-hour)</td>
<td>5.2 (39.3)</td>
<td>7.3 (54.9)</td>
<td>8.9 (66.9)</td>
<td>10.0 (75.5)</td>
<td>11 (83.0)</td>
<td>12.7</td>
</tr>
<tr>
<td>Orange peel bait (4-hour)</td>
<td>7.1 (31.0)</td>
<td>10.8 (47.1)</td>
<td>13.8 (60.4)</td>
<td>16.1 (70.0)</td>
<td>19 (82.9)</td>
<td>34.9</td>
</tr>
<tr>
<td>Orange peel bait (24-hour)</td>
<td>8.1 (31.8)</td>
<td>12.0 (47.2)</td>
<td>14.8 (58.1)</td>
<td>17.2 (67.5)</td>
<td>20 (78.5)</td>
<td>38.2</td>
</tr>
<tr>
<td>Dead wood inspection</td>
<td>17.6 (27.9)</td>
<td>27.6 (43.6)</td>
<td>34.1 (54.0)</td>
<td>39.2 (62.0)</td>
<td>45 (71.3)</td>
<td>71.0</td>
</tr>
<tr>
<td>Dried cocoa pod inspection</td>
<td>7.1 (32.7)</td>
<td>11.2 (51.2)</td>
<td>13.6 (62.4)</td>
<td>15.2 (69.8)</td>
<td>17 (77.9)</td>
<td>22.8</td>
</tr>
<tr>
<td>All methods</td>
<td>75.0 (55.0)</td>
<td>95.8 (70.3)</td>
<td>110.1 (80.7)</td>
<td>121.5 (89.1)</td>
<td>134 (98.3)</td>
<td>188.9</td>
</tr>
</tbody>
</table>

*aNumber of species represents the mean of 100 randomizations of sample pooling order.

*bICE, incidence-based coverage estimator; jackknife, first-order jackknife estimator; M-M, Michaelis-Menten asymptote (the percentage of the M-M asymptote is given in parentheses in the first five columns).

Also shows the ICE and jackknife asymptote values, as well as the predicted proportions (as percentages) of the M-M asymptotic value that would be obtained if 10, 20, 30, 40, and all 54 samples were taken.

Depending on the sampling method, the percentage of the M-M asymptote value that was obtained varied from 20.9 to 42.2, 33.5 to 59.1, 44.3 to 70.6, 37.9 to 79.1, and 62.8 to 90.6 when 10, 20, 30, 40, and 54 samples were collected, respectively. In all cases, Winkler extraction obtained the highest percentage of the asymptote value and small soil samples the lowest. There is reasonable agreement between the percentages of the asymptotes obtained for the various sampling methods, which were on average 34.6, 50.4, 61.8, 69.8, and 81.0 for 10, 20, 30, 40, and 54 samples, respectively.

For all methods combined, 70% of the asymptote value was collected by 20 samples, whereas for each individual method, a much lower percentage (33.5–59.1%) was collected by 20 samples, with some methods obviously performing much better than others. Thus, in the context of the total survey, increasing the number of samples from each individual
method did not necessarily add new species to the total census, although for particular methods, species that were rarely collected by one method were common in another.

Considering that the study area was sampled by 17 different methods and that a relatively large number of samples was taken, the total species count probably represents a nearly complete census. This conclusion is additionally supported by an asymptote value of 136.4 species (Fig. 10.1r) for the curve for all methods combined, which implies that the combination of 54 samples from all 17 methods obtained 98.3 percent of the asymptote.

Extended Sampling Experiment

The species-accumulation curves for the 500 Winkler extraction samples are shown in Fig. 10.2. As above, this graph also shows ICE, jackknife, and M-M estimators of species richness based on successively larger numbers of samples. The agreement between the predicted M-M asymptotic value and the actual maximum value encountered in the 500 samples is shown in Table 10.3. This table also shows the ICE and jackknife asymptotes, as well as the predicted percentages of the M-M asymptotic value that would be obtained if 10, 20, 30, 40, 100, 200, 300, 400, and 500 samples were taken.

If we were to compare the M-M asymptote value of 136.4 species for this extended sampling experiment (carried out in the 60-year-old cocoa plantation) with the asymptote value of 69.5 species obtained for only the Winkler extraction samples from the sampling methods experiment (carried out in the 20-year-old cocoa plantation), we might be led to conclude that ant species richness is higher in the 60-year-old cocoa plantation. In fact, this disparity is probably an artifact of the greater number of Winkler extraction samples that were taken in the extended sampling experiment, in which an average of 67.7 species was collected with 54 pooled samples. This value is quite close to the observed total of 63 species for 54 Winkler sack samples in the sampling methods experiment. When the species-accumulation curve for the 54 Winkler sacks in the sampling methods experiment is extrapolated out to 500 samples using the logarithmic equation of Soberón and Llorente (1993), 109.9 species are predicted. This is also quite close to the 107 species observed in the extended sampling experiment. But perhaps the most telling argument against a significant difference in species richness between the 20- and 60-year-old plantations is the similarity in richness estimates of 134.6 species for the former (based on all sampling methods combined) and 136.4 for the latter (based on the full complement of 500 Winkler extraction samples). It is particularly noteworthy that the first 100 samples yielded over three-quarters of the species that were ultimately sampled by this procedure, and that the last 200 samples yielded very few additional species.

Sample Size Experiment

For both the Berlese funnel and Winkler sack samples, number of individual ants, total number of ant species, and mean number of ant species per sample generally increased with increasing litter sample size. However, although
Table 10.3 Observed Number of Ant Species Evaluated at Different Sample Sizes for the Extended Winkler Sampling Experiment

<table>
<thead>
<tr>
<th>Observed Species Richness after Following Number of Samples:</th>
<th>Estimated Species Richnessb</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 20 30 40 100 200 300 400 All (500) ICE Jackknife M-M</td>
<td></td>
</tr>
<tr>
<td>36.5 50.0 56.3 62.1 79.5 92.7 100.1 104.5 107 112.0 117.0 103.6</td>
<td></td>
</tr>
</tbody>
</table>

aNumber of species represents the mean of 100 randomizations of sample pooling order.
bICE, incidence-based coverage estimator; jackknife, first-order jackknife estimator; M-M = Michaelis-Menten asymptote (the percentage of the M-M asymptote is given in parentheses in the first nine columns).

the number of individuals increased quite dramatically with increasing sample size, the increase in mean number of species per sample was far less pronounced. Increasing the sample size from 0.25 m² to 1 m², and certainly from 1 m² to 2 m², is associated with a very limited return for a costly additional investment in effort.

Based on the results of the sample size experiment, when sufficient sampling devices are available it is probably generally more efficient to take a greater number of smaller samples than to take a lesser number of larger samples. Since a single Winkler sack can generally hold the sieved litter from a 1-m² sample, this is probably the most appropriate sample size for most situations.

Complementarity of Sampling Methods

Table 10.4 lists the combinations of two and three sampling methods that produced the largest numbers of ant species in the sampling methods experiment. In each case, only combinations that produced the four highest species counts are shown. Winkler extraction is an element in all combinations, along with inspection of dead wood, small soil samples, pitfall traps (7-day), and Berlese funnels. The various two- and three-method combinations captured species totals ranging from 59 to 65% of the M-M asymptote calculated for all methods combined (Table 10.2). Species totals for three-method combinations ranged from 73 to 77% of the M-M asymptote.

Table 10.4 Combinations of Two and Three Sampling Methods That Obtained the Maximum Number of Ant Species in the Sampling Methods Experiment

<table>
<thead>
<tr>
<th>Combination of Sampling Methods</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winkler sack samples + small soil samples + inspection of dead wood</td>
<td>105</td>
</tr>
<tr>
<td>Winkler sack samples + inspection of dead wood + pitfall traps (7-day)</td>
<td>104</td>
</tr>
<tr>
<td>Winkler sack samples + pitfall traps (7-day) + small soil samples</td>
<td>103</td>
</tr>
<tr>
<td>Winkler sack samples + small soil samples + Berlese funnel samples</td>
<td>99</td>
</tr>
<tr>
<td>Winkler sack samples + inspection of dead wood</td>
<td>88</td>
</tr>
<tr>
<td>Winkler sack samples + small soil samples</td>
<td>87</td>
</tr>
<tr>
<td>Winkler sack samples + pitfall traps (7-day)</td>
<td>84</td>
</tr>
<tr>
<td>Winkler sack samples + Berlese funnel samples</td>
<td>80</td>
</tr>
<tr>
<td>Total number of litter species sampled by all methods</td>
<td>134</td>
</tr>
<tr>
<td>Total number of species from all strata</td>
<td>167</td>
</tr>
</tbody>
</table>

aN. number of species.
asymptote calculated for all methods combined. A similar exercise (results not shown) was performed with combinations of four sampling methods. Generally speaking, the combinations that maximized species counts are simply permutations of the methods listed in Table 10.4. The combination of methods that produced the maximum species count (117 species) was Winkler sack samples + small soil samples + inspection of dead wood + pitfall traps (7-day). This value of 117 species is 86% of the asymptote value calculated for all methods combined (Table 10.2).

Conclusion

The choices of what collecting methods to use and how many samples to collect are dependent on the intended species completeness of the proposed inventory, that is, on what proportion of the ant fauna the inventory intends to survey. The results presented here demonstrate that Winkler extraction is the most efficient method for surveying leaf litter ants and therefore that this method should be included in all ground-dwelling ant inventory protocols. If a second method is also to be used, we recommend pitfall traps. The total number of samples to collect should be determined both by the alpha diversity of the inventory site and by the level of species completeness that is necessary to achieve the project’s goals, but, based on the results reported here, in most situations we recommend taking 20 1-m² Winkler samples for areas comparable in size to the 1-ha 20-year-old cocoa plantation.
———. 1991. Revision of the oriental ant genus Cladomyrma, with an outline of the higher classification of the Formicinae (Hymenoptera:

——. 1970. Review of the ant genus Myrmica (Hymenoptera, Formicidae) in the European part of the USSR. Zoologicheskii Zhurnal 49:1829–1844. [In Russian.]

——. 1977. Review of the harvester ants of the genus Messor (Hymenoptera, Formicidae) in the fauna of the USSR. Zoologicheskii Zhurnal 56:1637–1648. [In Russian.]

———. 1976. The ant tribe Tetramorini (Hymenoptera: Formicidae). Constituent genera, review of smaller genera and revision of Triglyphothrix

——. 1949d. Revision of the ant tribe Dacetini. IV. Some genera properly excluded from the Dacetini, with the establishment of the Basiceroti-
——. 1950. Revision of the ant tribe Dacetini. II. *Glamyromyrmex* Wheeler and closely related small genera. Transactions of the American
Entomological Society 76:27–36.
Comparative Zoology, Harvard University 111:1–35.
——. 1954a. (1953) The Indo-Australian species of the ant genus *Strumigenys* Fr. Smith: S. wallacei
Emery and relatives. Psyche (Cambridge) 60:85–89.
Brown, W. L., Jr. 1954b. Remarks on the internal phylogeny and subfamily classification of the family
——. 1955. A revision of the Australian ant genus *Notoncus* Emery, with notes on the other
——. 1958. Contributions toward a reclassification of the Formicidae. II. Tribe Ectatommini
(Hymenoptera). Bulletin of the Museum of Comparative Zoology, Harvard University
——. 1960. Contributions toward a reclassification of the Formicidae. III. Tribe Amblyoponini
(Hymenoptera). Bulletin of the Museum of Comparative Zoology, Harvard University
——. 1962. The neotropical species of the ant genus *Strumigenys* Fr. Smith: Synopsis and keys to the
——. 1964. The ant genus *Smithistruma*: A first supplement to the World revision (Hymenoptera:
——. 1965. Contributions to a reclassification of the Formicidae. IV. Tribe Typhlongyrmeccini
——. 1972. *Askotogenys acubeeca*, a new genus and species of dactine ants from Malay
161–185. In B. J. Meggers, E. S. Ayensu, and W. D. Duckworth (eds.), Tropical Forest Eco-
systems in Africa and South America: A Comparative Review. Smithsonian Institution Press,
Washington, D.C.
——. 1974c. *Concictio concerta* species nov.
——. 1974d. *Dolioponera* genus nov. Pilot
Register of Zoology. Card No. 31.
——. 1974e. *Dolioponera fustigera* species nov.
Pilot Register of Zoology. Card No. 32.
——. 1975. Contributions toward a reclassification of the Formicidae. V. Ponerinae, tribes
Platythyreini, Cerapachyini, Cylindromyrmecini, Acanthostichini, and Aenictogitini. Search
Register of Zoology. Card No. 33.
Pilot Register of Zoology. Card No. 34.
——. 1976c. Contributions toward a reclassification of the Formicidae. Part VI. Ponerinae, tribe
Ponerini, subtribe Odontomachiti. Section A. Introduction, subtribal characters. Genus *Odonto-
——. 1977a. An aberrant new genus of myrmicine ant from Madagascar. Psyche
(Cambridge) 84:218–224.
——. 1977b. A supplement to the world revision of *Odontomachus* (Hymenoptera: Formicidae).
——. 1978. Contributions toward a reclassification of the Formicidae. Part VI. Ponerinae, tribe

on ant diversity and distribution on Santa Cruz Island, Galapagos. Biotropica 14:196–207.

Dlussky, G. M. 1964. The ants of the subgenus *Coptoformica* of the genus Formica (Hymenoptera, Formicidae) of the USSR. Zoologicheskii Zhurnal 43:1026–1040. [In Russian.]

Erickson, J. M. 1971. The displacement of native ant species by the introduced Argentine ant Iridomyrmex humilis Mayr. Psyche (Cambridge) 78:257–266.

Gadagkar, R., P. Nair, K. Chandrashekara, and D. M. Bhat. 1993. Ant species richness and diver-
sity in some selected localities in Western Ghats, India. Hexapoda 5:79–94.

Huxley, C. R. 1978. The ant-plants Myrmecodia and Hydnophyllum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist 80:231–268.

Linnaeus, C. 1758–1759. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (10th ed.). Homiae, Salvi. 2v.

Ogata, K. 1982. Taxonomic study of the ant genus Pheidole Westwood of Japan, with a description

———. 1989b. Ants of the *Plagiolepis* genus of the European part of the USSR. Zoologicheskii Zhurnal 68(9):153–156. [In Russian.]

———. 1979a. Three new species of the Paleotropical arboreal ant genus *Catalaicus* (Hyme-

Tillyard, R. J. 1926. The Insects of Australia and New Zealand. Angus and Robertson, Sydney.

Ule, E. 1902. Ameisengärten im Amazonasgebiet. Botanische Jahrbücher für Systematik, Pflanzen-
geschichte und Pflanzengeographien 30:45–52.
Umphrey, G. J., 1996. Morphometric discrimination among sibling species in the fulva-rudis-texana complex of the ant genus Aphaenogaster (Hyme-
noptera: Formicidae). Canadian Journal of Zool-
ogy 74(3):528–539.
Upton, M. 1991. Methods for Collecting, Preserving and Studying Insects and Allied Forms. Au-
Valone, T., and J. Brown. 1995. Effects of com-
Colorado.
Ground ant communities from central Amazonia
forest fragments. Pp. 59–70. In D. Agosti, J.
Majer, L. Alonso, and T. R. Schultz (eds.),
Sampling Ground-Dwelling Ants: Case Studies
from the Worlds’ Rain Forests. Curtin University
School of Environmental Biology Bulletin No.
18. Perth, Australia.
Vaz-Ferreira, R., L. C. de Zolessi, and F. Achával.
1970. Oviposicion y desarrollo de Oídios y
Lacertíllos en hormigueros de Acromyrmex.
———. 1973. Oviposición y desarrollo de oídos y
lacertíllos en hormigueros de Acromyrmex. II.
Trabajos del Cinco Congreso Latinoamericano
de Zoología, Montevideo 1:232–244.
Veerhagh, M. 1990. The Formicidae of the rain for-
est in Panguana, Peru: The most diverse local ant
Veersh, B. Mallik, and C. A. Viraktamath (eds.),
Social Insects and the Environment. Proceedings
of the 11th International Congress of IUSSI,
Vinson, S. B. 1991. Effect of the red imported
fire ant (Hymenoptera: Formicidae) on a small plant-decomposing arthropod com-
Von Ihering, H. 1891. Die Wechselbeziehungen
zwischen Pflanzen und Ameisen in den Tropen.
Wang, C., and J. Wu. 1991. Taxonomic studies on
the genus Polyrhachis Mayr of China (Hyme-
[In Chinese.]
Wang, C., G. Xiao, and J. Wu. 1989a. Taxonomic studies on the genus Camponotus Mayr in China
(Hymenoptera, Formicidae) [part]. Forest Research 2:221–228. [In Chinese.]
———. 1989b. Taxonomic studies on the genus Camponotus Mayr in China (Hymenoptera, For-
328. [In Chinese.]
Wang, M. 1993. Taxonomic study of the ant tribe
Odontomachini in China (Hymenoptera: Formi-
cidae). Scientific Treatise on Systematic and
Evolutionary Zoology 2:219–230. [In Chinese.]
Wang, M., G. Xiao, and J. Wu. 1988. Taxonomic
 studies on the genus Tetramorium Mayr in China
(Hymenoptera, Formicidae). Forest Research 1:
264–274. [In Chinese.]
Ward, P. S. 1980. A systematic revision of the
Rhytidoponera impressa group (Hymenoptera:
Formicidae) in Australia and New Guinea.
———. 1984. A revision of the ant genus Rhytidoponera (Hymenoptera: Formicidae) in
New Caledonia. Australian Journal of Zoology
32:131–175.
———. 1985. The Nearctic species of the genus
Pseudomyrmex (Hymenoptera: Formicidae).
———. 1987. Distribution of the introduced
Argentine ant (Iridomyrmex humilis) in natural
habitats of the lower Sacramento Valley and its
effects on the indigenous ant fauna. Hilgardia
55:1–16.
———. 1988. Mesic elements in the western
Nearctic ant fauna: Taxonomic and biological
notes on Amblyopone, Proceratium, and
Smithistruma (Hymenoptera: Formicidae).
Journal of the Kansas Entomological Society
———. 1989. Systematic studies on pseudomyrme-
cine ants: Revision of the Pseudomyrmex ocu-
latus and P. subtilissimus species groups, with
taxonomic comments on other species. Quaes-
tiones Entomologicae 25:393–468.
———. 1990. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): Generic revi-

———. 1957. A second look at the ants of the *Camponotus herculeanus* group in eastern Asia. Journal of the Faculty of Agriculture, Kyushu University 11:45–51.